NOVEL HYPOBROMOUS ACID REACTION ON METHYLCYCLOPROPANE - A DICHOTOMIC STUDY WITH LONGICYCLENE AND CYCLENE¹,²

S.N. Suryawanshi and U.R. Nayak^{*} National Chemical Laboratory, Poona 8 (India)

(Received in UK 25 July 1977; accepted for publication 18 August 1977)

THE idea of HOBr-mediated cyclopropane ring-opening/functionalization was first mooted for the possible generation from longicyclene³ 1, a difunctional longibornane derivative of the type 2 - a viable synthon in the synthetic quest for culmorin⁴ 3 - the sesquiterpene diol mould metabolite from <u>Fusarium culmorum</u>. Experimental invalidation of this rather conceited

theoretical proposition notwithstanding, the action of HOBr on the methyl cyclopropane moiety in the sesquiterpene $\underline{1}$ provides an uniquely interesting study specially when compared with that of its monoterpene analog $\underline{4}$.

Chromatography (SiO_2/IIa) of the product from reaction of HOBr [NBS (2 mole eq.) - aq. dioxane-CaCO_3]⁵ on longicyclene gave no indication of any hydroxybromo derivative. Instead, the isolable major pure compound analysed for an oxygen-free dibromide, $C_{15}H_{22}Br_2$ (yield: <u>ca</u> 50%; M⁺ 360, 362, 364) - clearly an unexpected but novel derivative whose structure has been spectroscopically rationalized as 10-bromo- ω -bromolongifolene 5 (R=Br): PMR (CCl₄): three tertiary Me singlets at 1.03 (3H x 2) and 1.076, 3.33 (1H, br.s, Br HC-C=C-Br), 3.80 and 3.876 (1H, dd, J = 8 Hz, H-C-C-C, 5.8056 (1H, s, >=<H). Br H IR (smear): 3150, 1645, 785 and 765 cm⁻¹ (>=<H). The formation of the

secondary/vinylic dibromide <u>5</u> (R=Br) in a HOBr reaction on the methylcyclopropane molety in a substrate of the type <u>1</u> constitutes a unique transformation and must necessarily involve a multi-step mechanistic pathway (<u>vide</u> <u>infra</u>): HOBr additive-cleavage/dehydration/HOBr addition/dehydration.

In a comparative study the reaction of HOBr with cyclene 4 was considerably faster and proceeded to completion to furnish, on chromatography, three compounds: the unusual secondary/vinylic dibromide 6 (analogous to 5; 34%), its precursor, the bromo-bromohydrin 7 (10%) and the expected 1,3hydroxybromide 8 (m.p. 80°; 30%). Validity of the structures assigned to these compounds is borne out by their spectral data. <u>Compound 6</u>: $C_{10}H_{14}Br_2$ (M⁺ 292, 294, 296); PMR (CCl₄): two tertiary Me singlets at 1.05 and 1.12 5, 3.37 δ (1H, br.s, HC-C=C-Br), 3.83 and 3.90 δ (1H, dd, J = 8 Hz, -HC-CHBr-CH₂-), 5.80 δ (1H, s, >=< $\frac{Br}{H}$); IR(smear): 3000, 1625, 800, 780 cm⁻¹ (>=< $\frac{Br}{H}$). <u>Compound 7</u>: $C_{10}H_{16}OBr_2$ (M⁺-Br 231 and 233 and M⁺-Br-H₂O 213 and 215); PMR(CCl₄): two tertiary Me singlets at 0.92 and 1.05 δ , 3.53 δ (2H, q, J = 10 Hz,>C -CH₂Br), OH

4.0 δ (1H, br.m, -CH-CHBr-CH₂-); IR(smear): 3350, 770, 750 cm⁻¹. Compound 8: C₁₀H₁₇OBr (M⁺-Br 153); PMR (CCl₄): two ordinary Me singlets at 0.85 and 0.98 and one deshielded Me singlet at 1.20 δ (>C<^{OH}_{Me}), 4.10 δ (1H, br.m, -HC-CHBr-CH₂); IR (nujol): 3150, 750 cm⁻¹.

Finally, it must be mentioned here that the unusual dibromo derivative 5 (R=Br) is formed only as a minor product (<u>ca</u> 10%) in the bromination $(Et_20/0^{\circ})$ of longicyclene <u>1</u> which generates the monobromide, ω -bromolongi-folene 5 (R=H) in 75% yield.

REFERENCES AND NOTES

- 1 Communication No. 2169 , National Chemical Laboratory, Poona.
- 2 Newer Aspects of Longifolene V.
- 3 U.R. Nayak and Sukh Dev, Tetrahedron 24, 4099 (1968).
- 4 D.H.R. Barton and N.H. Werstiuk, J. Chem. Soc. (C), 148 (1968).
- 5 W. Cocker and D.H. Grayson, Tetrahedron Letters 4451 (1969).
- 6 In the case of ω -bromolongifolene <u>5</u> (R=H) the vinylic proton appears as a singlet at 5.50 **5**.